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Generalized Multiport Reciprocity Analysis of
Surface-to-Surface Transitions Between
Multiple Printed Transmission Lines

Nirod K. Das, Member, IEEE

Abstract—A new method of analysis of surface-to surface tran-
sitions between arbitrary combinations of multilayered printed
transmission lines using a general multiport reciprocity formu-
lation is presented. The scattering parameter at a given port
of the transition is computed by directly relating it to simple
reactions of the known eigenfields of the particular port on
various induced strip currents or slot electric fields of other
transmission lines. With simplifying practical assumptions in this
general analysis, and by use of an efficient “singularity extraction
technique,” equivalent circuit models for particular cases are
extracted with simple closed-form expressions for the equiva-
lent circuit parameters. The multiport scattering matrix of the
transition completely describes the coupling characteristics of the
transition, and via standard network analysis can be conveniently
used for design optimization of any port terminations and/or
matching circuits. Detailed case studies of the general analysis
include: 1) a single-layered microstrip line-to-slotline transition,
2) a microstrip-to-crossed covered microstrip transition, 3) a
double microstrip line-to-slotline transition, and 4) a stripline-
to-dual slotline transition.

I. INTRODUCTION

URFACE-TO-SURFACE transitions between printed

transmission lines are useful for multilevel integrated
circuits, and are particularly attractive for multilevel feed
network architectures of multilayer phased arrays [1]-[4].
Characterization of crossover transitions between conducting
strips is also of significant interest in modeling parasitic
couplings between metal lines in high-speed digital inte-
grated circuits [5], [6]. An equivalent circuit model for a
microstrip—slotline transition [7] has long been used, and
a dynamic analysis for the stub-tuned microstrip—slotline
transition has also been published [8]. A quasi-static model for
a perpendicular strip-crossover has been developed in [5], with
rigorous solutions reported in [6] for only a uniform dielectric
case, and in [9] for a two-layer stub-tuned geometry. For a
multilayer phased array application [1]—[4], many other types
of transitions between two or more different combinations
of multilayer transmission lines will be useful. A general,
rigorous, and computationally efficient analysis of such large
class of transitions involving arbitrary orientations of multiple
transmission lines is warranted for successful design and
understanding.
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In this paper, we present a general, full-wave analysis of
multiport, multiple transmission line transitions using a multi-
port reciprocity formulation [10], [11]. Using this formulation,
the scattered signal at a given port of the transition is directly
related via reciprocity to the reactions of the known eigenfields
of the particular port on various induced strip-currents and
slot electric fields. This results in a simple and efficient
modeling of the coupling mechanism, as will be discussed.
With practical approximations in the reciprocity analysis, and
using a “singularity extraction technique” to compute the
various coupling factors, equivalent circuits of the transition
can be directly extracted with simple, sometimes closed-form,
expressions for the equivalent circuit parameters. In contrast,
a “brute-force” moment method analysis similar to [8], [9] is
considered strictly numerical in nature, and so computationally
inefficient, where similar extraction of an equivalent circuit
with simple expressions for the equivalent circuit parameters
will not be possible.

The analysis has been implemented in spectral domain,
in terms of spectral integrals of various field and current
transforms. A general configuration of substrate layers is
accounted for by using the multilayer spectral-domain Green’s
functions [12]—[14], whereas any arbitrary choice of trans-
mission lines of the transition is handled by substituting in the
analysis for the necessary propagation constants, characteristic
impedances, and eigenfields or eigencurrents of the individual
transmission lines [12], [15]—[17]. The arbitrary combinations
of transmission lines, as well as any arbitrary relative ori-
entations between them, are properly accounted for in our
analysis by using a general form of reciprocity relationship.
The general analysis provides the complete scattering matrix of
the multiport transition, using which port terminations (stubs,
matching circuits, etc.) can be included. Selected case studies
of the general analysis are presented. Useful circuit models
arc derived from the general theory, with simple expressions
for their circuit parameters.

II. GENERAL THEORY

Fig. 1 shows the general geometry of a proximity transition
of multiple printed transmission lines. The eigensolutions for
the individual port transmission lines are described by their
characteristic impedances, Z.,, propagation constants, ke;,
the strip current or slot electric field distributions, and the
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Fig. 1. General geometry of a transition with multiple planar transmission
lines. The transmission lines (which can be a microstrip line, a slotline, a

stripline, or a coplanar waveguide, for example) should be imagined to be
pnntcd on different layers of a multilayer substrate configuration. Different
current components on the mput ]th and a coupled, ith, transmission line

are shown.
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These eigensolutions are assumed to be known a priori. Full-
wave printed transmission line analyses [12], [15]—[17] can be
used in this effect. Further, the elgenﬁeld distributions, €;- and
hﬂE are assumed normalized to unit propaiatlng power. Also,
the transverse (to &;) components, €35 or A, of the respective
incoming (+) or outgoing (— ) eigenfields of (1) are related to
each other as

= i ) .

€it = Cit> by = —hy - )
As Fig. 1 shows, a transition with NV through transmission

lines results in a 2N port circuit. For notational convenience,

the two ports of the ith transmission line are assumed to be ¢

and N + i, with ke; = kon i, Zei = ZeN4i, and
4 TE
eit = eﬁ.l_ia h; = hN-Fi‘ 3

Further, for an arbitrary port, k, k < 2N, the transmission line
associated with the port is referred to as the kth transmission
line, and the port opposite to the kth port is referred to as the
kth port (see Fig. 1).

The 2N port transition of Fig. 1 is completely described
by its [2N x 2N] scattering matrix [Sij]- The scattering pa-
rameters can be characterized by exciting one port j-ata
time with unity incident power from a matched source, and
computing the outgoing fields at all matched ports. Hence,
in the following discussions, we would assume a single port
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(jth) excitation problem that can be repeated for all 1 <
j < 2N to obtain the complete scattering matrix. Now, for
this condition of jth port excitation, the strip electric currents
or slot equlvalent magnetic currents on the transmission lines
J can be expressed as superposition. of two different types
of current modes, i.e., the traveling-wave part T, of infinite
or semiinfinite extent propagating toward or away from the
junction region, and the additional nontraveling-wave currents
of finite extent J; in the vicinity of the transition. The
traveling-wave currents J; on the transmission lines can be
further decomposed into (see Fig. 1) 1) the jth port excitation
current J. of infinite extent, and 2) the outgoing scattered
currents J,;, of semiinfinite eéxtent on kth transmission line,
for all k< N:

N 1
J= Jf-|-Jt Jf+(7 s_]s):jf+ 75'?‘27519],

k=1 .
| @)
Jo = Jej = J e k%3, —o<x;<00, (5

Tok = [u(@r) Ry n [ e~ TFerm
+ u(xk+N)Rk?k+Ne“jkekwk+N]
= Rk+N7£k + Rkjjka k S Na (6)
=83

otherwise, N

i = (fra(@r)n + Fry(Yr)Gn); |
Fren = i(fkm(yk+N)50k+N + fey(Yren)Iktn),  (8)

N Nk

Jg= 71; ZZI]ka]
k=1 k=1 j=1
Ny .
;EIsz, Nf:Zkaa O
=1 ‘

k=1

where 7’; is the finite length current on the kth transmission
line decomposed into Ny, modes, resulting in a total of Ny
finite lerigth modes of the system with unknown amplitudes
I. u(z) is the standard unit step function.’ froand fiin
are the transverse variations of the forward and backward
propagating semiinfinite traveling-wave currents, J Tk and J .,
respectively, with transverse Fourier transforms Fi(yx) and
Frin(@Wran). The f, and T 4 are chosen such that they
correspond to the required unit propagating power for the kth
transmission line eigenfield, as mentioned earlier. For exdample,
for a single microstrip line, it requires the integral of f, over
the strip width to be 1/v/Zx; whereas for a single slotline, it
requ1res the integral of f, over the slot to be v/Z. Also, the
+ sign before the expression for f, . in (8) is required to
establish a common electric field reference for the two ports,
kKand k+ N, at 23 = 24 n = 0, and should be chosen o be
positive (+) for a strip type kth transmission line, ard negative

(—) for a slot type kth transmission line with an equivalent

magnetic current representation.
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A. Reciprocity Formulation

Here we will use a general multiport reciprocity formulation
in a similar basic form as that of [4], [14]. We will keep the
basic formulational details to a minimum, emphasizing only
the key steps that are exclusively new and vital to the transition
modeling.

Now, the currents on all other transmission lines except
the ¢th transmission line can be treated as the sources of
excitation Jg (or M) for the outgoing scattered waves on
th sth transmission line of amplitudes R, and R; (see Fig. 2).
These source currents, Js (or Ms)include all finite length
currents, 7’;, k # 1; all scattered traveling-wave currents,
Ter, k # 1; and the jth port excitation current, 75]-, ifj # 1
as given by (4)—(9). One can now use a reciprocity treatment
[10], [11], [4] to relate the scattered fields, R; and R,, to
the reaction of the incoming eigenfields of ports ¢ and 4,
respectively, on the excitation source Jg. Consider the two
sets of fields, identified with subscripts A and B, respectively,
that are defined for the ith transmission line at the ¢th and the
ith ports as (see Fig. 2):

(Es=FE.4=RE,

$ iIA :E’A :fiH‘ , at 7th port;
Ep=FEp=F,

\Bg=H.z=H,

rEA = EEA = RLEL_
Hi=His=RH;
AT AT at sth port, (10)
Ep=Ep = E,

\Hp=H;p=H,

with corresponding sources of excitation (surface currents)

75,4 (OI‘, MSA) = jg (OI‘, Ms), and

Jsg (or, Msg) =0. (11)

"Appropriately applying a reciprocity relation between the A
and B fields [4], [10], [11], [14], and simplifying using (10),
(11), (1), (2), we have (see Fig. 2)

/// (<Ep-Ts+Hp-Ms)dv =
« sources
ﬂ (Bp x Ha— By x Hp)ds
S
_ // (Bp xTa—FaxHg)ds =2R;, (12)
J port 2
R; =
% / (_e—Jkﬂmlé-j Ts +e~]kuwzﬁj .MS) ds .
sources
(13)

Similarly by choosing the B-fields in (10) to be propagating
in the opposite direction, we will have

1 . - —
Ri = —-2— // (—(—3-716‘“3“‘6;+ Jg+ (;"]ke"zlhi+ . Ms) ds.
sources - -
(14)
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Fig. 2. Two sets of fields (subscripted A and B) on the ith transmission line,
with the corresponding sources, used for the reciprocity analysis. The closed
surface S should be chosen sufficiently away from the coupling region such
that the B-fields are zero at all other ports except the ith and :th ports.

Further simplifying the reciprocity equations (13), (14) using
the appropriate source expressions, Jgs(or Mg), discussed
earlier in this section
|
R=53 (Rk+N (iVSJ:k) + Ry, (ivs’;k))

k=1
k£
Ny

1
Y- L(xVia) + o (EVey),

=1
Inotoni

1
2

_ _ T\ 5
Ve” = //hl e Jke;wzelﬂ- (or, hi ) .fje Jke;x, ds,
Jjth line

(16)
VS’;k = // eIkt (or, Ej)
kth line
+ Trulwp)e et ds, (17)
Vh, = // ezt (or, 7))
kth line
- Fronu(@ppn)e RN dg (18)

Vi = // €—jk”x"él+ (or, ?LT) . 7fl ds, (19)
Ith mode

where Vs are the coupling integrals from the sth transmission
line to different current modes on other transmission lines.

It should be noted, if the scattering source distribution, f
or J, refer to an electric or an equivalent magnetic current
mode, the eigenfields for the computation of Vs in (16)—(19)
must be chosen to be, cigen-clectric (2"), or eigen-magnetic
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(E:- ), respectively, and a (+) or a (—) sign, respectively,
must be selected before the corresponding Vs in (15). This is
consistent with the general reciprocity equations (12)—(14). As
before, in order to maintain generality, all current distributions,
T or 7ﬂ have been assumed to refer to either an electric or
an equivalent magnetic current mode, as appropriate.

B. Moment Method Solution of Nontraveling-Wave Currents

In (15), we have directly established coupled relations
among the different scattering parameters. If the currents on
the transmission lines, including in the vicinity of the junction,
are closely described by the infinite and semiinfinite traveling
current modes alone (or I, = 0), the reciprocity equation (15)
will give a complete set of 2N equations to solve for the
2N unknown scattering parameters R;. For some specific
types of transitions, this is in fact the case, as discussed in
Section III. In general, however, additional nontraveling-wave
currents are induced in the vicinity of the junction, and are
described by the finite mode currents, 7fl, with unknown
amplitudes, I;, { = 1, Ny. To solve for these additional sets
of Ny unknown amplitudes, a Galerkin’s moment method
procedure is used to provide the required Ny additional linear
equations.

If the kth transmission line is a strip-type transmission line,
the total tangential electric field, —EZOt, on its strips must be
Zero

E_Zﬁ =Ep+Eu=Efpp+Eet + E1 =0

Ns N
= Z LEpi + Eeji + Z <R1+NE£ik + RlE:ik)
=1 =1
(20)

where the subscripts f, ¢, e and s refer to fields produced due to
the scattering sources .J I TJi, Je, and J, of (4), respectively,
with various indices corresponding to the respective source
indices in (5), (6), (9). This zero tangential electric field bound-
ary condition can be enforced variationally by a Galerkin’s
testing procedure on all finite current modes, 7fl, Il =k, on
the kth transmission line

Z I Z’Ll + Vejl + Z ( 1+stf7,l + Riv.ls)il) =0 ? (21)

=1
Zy = // Efip - Jpuds, (22)
Ith mode
Veyl = // Ee]k 7fl ds
Ith mode
= // e_jkea-%éj’ ’7fl dS;
Ith mode
=0, ifj=1, (23)
szl - // Eszk Jfl ds ’ (24)
Ith mode
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where the notation [, also to be used elsewhere, stands for
the transmission line on which the Ith finite mode, Jy,
resides. Note that the reaction, v.j; in (23), of the jth incident
eigenfields on the lth finite mode is zero if [ = 7, which
implies the eigenfields of a particular transmission line do not
couple to the currents on itself.

On the other hand, if the kth transmission line is a slot
type, the required boundary condition is the continuity of the
tangential magnetic fields across its slots

= (Hp - Tj) + (o -3
= (H}k - Ff‘k) + (Fik - Hek)

==tot2

—=totl
_Hk

Hy,

(25)
Enforcing this boundary condition via a Galerkin’s testing

procedure will result in a set of linear equations similar to
(21), with

1 —9 —
Zu= zl+Zzl_// (Hfik_Hfik)’Jfldsa
Ith mode

(26)
Vejt = Uelzjl + vél
—1
://lth . (Hegk'“Hegk> Jflds
— —jke,x -+ —+2 T .
—//lthm()dee Jies J(hj —h; ) - J 1 ds;
=0, ifj=1, (27
—f1,b 2,52
o=l [ (E T
Ith mode /
. 7fl ds, (28)

where the superscripts 1 and 2 refer to field components above
and below the slot, respectively.

To comprehend, Z;; is the reaction from the ith to the Ith
finite length basis modes, vfi, and v°,, are the reactions from,
respectively, the forward (%;) and backward (Z;4 ) propagat-
ing semiinfinite traveling currents on the ith transmission line
to the Ith finite mode, and v, is the reaction from the jth
infinite transmission line to the /th finite length mode.

C. Spectral-Domain Formulation
Now, the various reaction integrals (16)—(19), (22)-(24),
and (26)—(28) can be implemented in spectral-domain using

the multilayer full-wave Green’s functions of [12]-[14] and
Fourier transforms of current distributions

1 E=Lr] = g
T T () - (e )

Fl (k;l) ejkej e ejkz” At s

erj =

(29)
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1 & —k = =
Vf‘ =35 . . Fk(kyk) : G(—keza kyz) Fz(kyz)
H(—kyp + kg, )e?Far Az gibyeBuin g (30)
Vie=ot [

sik 9 e
k —k

Fronlbyern) - G(=kei, ky)

T

: Fz’(kyz)H(_kwk-l—N + kek—}-N)

e]kwki»NATIc{—Nl e]kyk+NAyk+N1 dkyi , (31)

ez

1 [ = =
Vfil = é— / Jfl(k:cma kym) . G(_keiy kyz)
m ‘Oo7kmz——kem

- Fi(ky) dkys;  m=1, (32)
1 [ =
Zy = w2 //_oo T51 (koms kym) - G(Kan, kya)
o Tpi(kom, kyn) dban dbyn;  m=1, n=1,
(33)
foe L R e ) Gk, By)
Vsit = :1;3 - fi\Pazm, hMym zty Ny
. —Fl(kyl)H(km + kei) dk; dkyi , (34)
b 1 * T
Vsit = m Jfl (kzmy kym)
'5(km+N, kyitn)
Fip N (kyisN)H (koirn + kei)
dkzotr v dkyit N, @35
veji = Viji, (36)
Kl = kes ot 6; + kej csc 0j;;
k. = kycscli + kescot 8., 37)
yi j j s
H(k,) = %J- . (38)

T

In the above equations, the G’s are the full-wave dyadic
Green’s functions in spectral domain with appropriate source
and field components and positions. (Aa:jz, iji) is the offset,
if any, of the reference point of the jth transmission line with
respect to that of the ith transmission line in the (z;, y;)
coordinate system (see Fig. 1). As a common practice, the
finite basis modes are assumed to be expressed with respect
to the coordinate system of the associated Zth transmission

line. The test current transforms, F and J, are assumed
to be expressed with respect to their own local coordinate
systems (the test coordinate system (Kym, kym) in (32), for
example), but need to be changed to a common source
coordinate system [(kqi, ky;) in (32), for example] before
performing the necessary spectral-domain coupling integrals.
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If ffl (kom, kym) is the transform of the Ith finite length
mode on the (kgym, kym) plane (I = m), the new transform

j;l (kau, kyi) on the (kg;, ky,) plane can be expressed

Tty (ki biys) = Tyt (K, K )€ 7Kem Ams g =3} Bt
(39)
k;m = —kg; 8in Op; + ky; 08 Oy

KL = ko €08 Opy + kiyi 5in b, (40)
where as shown in Fig. 1, 6,,,; is the angle between the mth
and ¢th coordinate systems.

It should be noted that the spectral-domain coupling func-
tion, Ve;,, is a closed-form expression not requiring an integra-
tion. This is because both the source and the coupled modes
are infinite length transmission line modes. The coupling
functions Vs’;k, V2., and V}; are associated with an infinite
length source mode but a noninfinite (finite or semiinfinite
length) coupled mode, and so require simple single spectral
integrals for evaluation. In contrast, for the other coupling
functions Z;, vfil, and v;’il, both the source and coupled
modes are of noninfinite type, and so they are expressed using
two-dimensional spectral integrals. Because the reciprocity
equations (15)—(19) involve only the simpler closed-form
or single-dimensional integral functions V,;;, Vs{k, Vb, and
Vi1, essential information on the coupling mechanism are thus
efficiently extracted through the reciprocity modeling.

D. Singularity Extraction Technique

As discussed in [4], it is important to note that the Fourier
transforms of the scattered currents J,, in (6), contain sin-
gularities at +ke;, along the real k., spectral axis. In order
to evaluate various spectral coupling integrals involving Jg,
it requires suitable deformation of the integration contour
above and below the poles at +k., and —k.;, respectively,
on the complex k. spectral plane [4]. Besides, the various
spectral Green’s functions that relate the appropriate field
components to the source currents also have singularities on
complex plane, as usual. Evaluating various spectral integrals,
V and v in (29)-(36), involving the above singular functions
require careful interpretation as well as special numerical and
analytical considerations.

Consider the coupling integral V;{k, in (30), that needs to be
evaluated along the required deformed contour C, as discussed
above [4]. We decompose VSJ:k into two separate integrals, Iy
and I», as follows:

1 oo
Vi o= = _m dky; = Iy + I, (41)
1 [ i 5 F
I = > [Fy(kyr) - G(—kes, kya) - Fi(ky,)
—Oo,kzz=‘kei

H(_kmk + kek)ejkzkAwk1ejkykAykz — 72] dkyi

1 oo

== (71— 72) dky ,

e (42)



DAS: ANALYSIS OF SURFACE-TO-SURFACE TRANSITIONS BETWEEN MULTIPLE PRINTED TRANSMISSION LINES

~

b= Ty (ki) - Gk B5) Tk

ejk;kmm PRIAPNTS
e
-2‘;; _0'070 H(kek - kzk) dkyZ
1 [~ 1
o T dkyi = 5 Veir 43)
L Hk - ko) dbys = — (44
27 —o0,C ek ok ve 2|sin 0kz| ? )

where it can be shown that the integral I; is a well-behaved
integral that can be efficiently computed along the real axis.
On the other hand, the singularity of the integral, Vs{ « has been
effectively extracted onto Is. I> is a simple singular integral
that has been analytically evaluated along the proper deformed
contour, C. Fig. 3 shows the original, 71, and the extracted,
~1—"y2, integrands of V;’: «» for the crossover coupling between
two intersecting microstrip lines, along with the pole locii and
the path of integration on the real (kg;, ky;) plane. Fig. 3
clearly shows the original singular integral, and the well-
behaved extracted integral. Note that the surface-wave poles
due to the Green’s functions are not encountered by the path of
integration. This assumes that the individual transmission lines
are desirably nonleaky type [17], with propagation constants
greater than that of the surface modes. ( ‘

Unlike the coupling integral, Vs’: «» discussed above, ”gu isa
double integral over the entire (ky;, kyi) space. Hence, in the
domain of integration of vfil, we will encounter not only the
pole due to the semiinfinite traveling-wave transform, but also
the pole due to the spectral Green’s function. Extraction of
multiple singularities of two-dimensional spectral coupling in-
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Fig. 3. Original (1) and extracted (yy — 2) integrands for the-computa-
tion of coupling between the incident wave at port-1 and the forward scattered
mode (77,) at port 2: €, = 2.2, €2 = 10.2, D1 = Dy = 0.0635 cm,
Wi = 0.107 cm, Wy = 0.183 cm, Z.1 ~ 520, Zep ~ 54 Q, €eff1 =
3.40, €eff2 ™ 3.91,vfreq. = 10 GHz.

1169

tegrals using multiple extraction functions has been discussed
in [4] and [14], and is not repeated here.

III. RESULTS

We now apply the general analysis to selected transition
geometries. Any stub and/or matching circuit of a practical
transition geometry is accounted for via the multiport scat-
tering matrix obtained from the general reciprocity analysis.
Such a network approach is strictly valid only if the fields of
the stub terminations do not directly interact with the fields in
the vicinity of the transition. This condition is applicable to the
stub-tuned geometries we have studied here, as well as many
other practical transition configurations. In such cases, the end-
corrections of the stubs, if critical, can be separately analyzed
independent of the transition [18]—[20], and then incorporated
as the port termination of the transition via the multiport
scattering matrix. In other words, the transition coupling and
the end-discontinuity of the tuning stubs are considered as two
distinct problems electrically independent of each other. We
have limited the scope of our paper to the rigorous modeling
of the transition coupling alone. Unless otherwise mentioned,
a stub has been assumed ideal without including any end-
correction, which in most cases results in only second-order
corrections. A colinear transition similar to [21], where the

* open ends of the transmission lines are essentially inseparable

from the transition coupling, cannot be handled by the present
analysis. ' ~

A. Microstrip-to-Slotline Transition

Fig. 4(a) shows the general geometry of a transition between
a microstrip line and a slotline, which are generally inclined
at an angle §. Using the reciprocity/moment method analysis
discussed in Section II, this transition can be rigorously ana-
lyzed to obtain the complete four-port scattering parameters.
However, several degrees of practical approximations can be
possible neglecting non-dominant coupling effects. We will
specifically discuss such approximations for a perpendicular
transition. The approximations have been validated by com-
paring to our most rigorous results and other results from
literature.

Consider the transition geometry of Fig. 4(a), with ¢ =
90°. We apply the general reciprocity analysis of Section 1I
to this perpendicular transition, neglecting the finite length
nontraveling-wave currents J; in (4), (9). Assume the fol-
lowing transverse variations in (8):

= (w7=) ¢(Wm/12>2 it

() s

T2,
TN (Wef2)* — 3

described over the strip-width of the microstrip line, or the
slot-width of the slotline, respectively. For excitation at port 1,
using proper symmetry considerations for coupling between
different ports, the reciprocity equation (15) can be written

r1;

sl

=i

(45)
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Fig. 4. (a) Geometry of a four-port transition between a microstrip line and a slotline, which are, in general, inclined with each other at an angle
6. The simplified equivalent circuit for the transition when 6 = 90° is shown as the insert. (b) Comparison of equivalent turns ratio n for a
perpendicular microstrip—slotline transition obtained from the present reciprocity model (49) with that of Knorr’s model [7]: curve [—D = 0.3175 cm,
er = 20, Wi, = 0.157 cm, W, = 0.206 cm, curve II—D = 0.12 cm, ¢ = 10.2, W), = 0.12 cm, W, = 0.11 cm.

1 1
o Vi 5 Veir = 5 Vekas
1 . .

Rl = Sll - —R3 =1- 531 = 5<R4Vs€2 + szvsblz) 2, k= 13 2a ? # k. (47)
— £

= Su Vi The above approximations are valid if in (41)—(44) the contri-

Ry = — i oy — i ( R4 V's]; L F R1V3b21> bution from th'e extractefl integral I, i.s neglecte.:d as cqmpared

2 2 to the extraction function I,. Physically, this implies that

- L 2 — RV the coupling to a semiinfinite current mode is approximated

2 by half the coupling to the respective infinite traveling-wave

Ry = Ry = S41 = Sa1; V];z = Vs

s current, neglecting the additional reactive coupling to the
st21 =

discontinuity of the semiinfinite mode. Using these approxi-

(46)
mations of (47) in (46), we get

—Vii; Verz = ~Vear .
These complete sets of equations can be solved for all S;;.
Similarly solving for excitation at other ports, by substituting
appropriate Vs in (46), we obtain the other scattering parame-
ters, S;;, J = 2,3,4. The required V’s may be computed S21 = S41 = Soz = Suz = iVem _ lSIIVe23
from (29)-(31), that involve only closed-form functions or 2 2

single spectral integrals. With further simplification based on = % 12(1 — Sy1);

the singularity extraction derivations of (41)—(44), we obtain
Verz = Very;

the following approximations: | 1
1 1 Sag = Sog — 1= 84y = 5 S12Veas = 5 S12Ve12;
Si; =8, (48)

1
S11=1- 83 = 5 S41Ve12 = Sa3;

Veas = ~Vear = Veqa;

Vil = 5 Ve = =5 Vs
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These above-mentioned sets of relations result in the equiva-
lent circuit shown in Fig. 4(a) (insert), where the turns ratio
n can be expressed as

Zem
Zes
= JO(kesz/2)J0(kemWs/2)éHyJ¢(_kema kes)
_ Jo(kesz/z)JO(kemWs/2)
B K2, + k2,
k’gmk'QGT
. (kog, cos k1D — ky sink, D)

K2,k ]

n = Ve

+ (k1coskiD + ko sink; D) (49)

where V12 is evaluated using (29); the Green’s function com-
ponent, Gy, j,, accounts for the y-component of the magnetic
field on the ground plane produced due to an z-directed current
source placed on top of the substrate [12]-[14]; J, is the
zeroth-order Bessel function; and

k= \/Ikger —kZ — k2l = kO\/|€r —€ffs ~ €effml;

ko = kO\/leeffs + €errm — 1;
kes:koveeffs; kem:kOVEeffm .

This expression for turns ratio n uses accurate distributions
of microstrip current and slot electric field with proper edge
singularity, as well as the exact spectral Green’s function ex-
pressions. It realistically depends on the microstrip parameters
(Wi, €cffm), as well as the slotline parameters (W, €cfss)-
In contrast, the ad hoc expression of Knorr [7] unrealistically
depends on the slotline parameters alone. Our values of n
are compared to those of [7] in Fig. 4(b) for two parameter
sets. The two methods provide comparable results for lower
frequencies, with unity at de (f ~ 0), as expected. However,
the two methods significantly deviate at higher frequencies
suggesting the inaccuracy of the Knorr’s model [7] for high-
frequency applications. Moreover, our equation (49) provides
a general closed-form expression that is also applicable to
other microstrip—slotline transitions with multilayer substrate
geometries. Such flexibility is achieved by substituting in (49)
the proper values of propagation constants, ken, and k., for
the multilayer microstrip line and slotline [12]-[15], [17], and
the appropriate expression for the multilayer Green’s function
[12]-[14]).

Fig. 5 compares various results for a perpendicular stub-
tuned transition. The curve (a) has been derived using the
equivalent circuit model of Fig. 4(a), where the turns ratio n
is given by the closed-form expression of (49). The curve (b)
uses the reciprocity equations (46), and unlike the curve (a) it

(50)

does not use the approximations of (47). Clearly, both curves -

(a) and (b) neglect the finite length nontraveling-wave current
modes in the vicinity of the junction, whereas curve (c) has
been obtained using the most rigorous reciprocity formulation,
including the additional finite length current modes Jg in (4),
(9). It may be noted that our reciprocity analysis provides
the 4-port scattering parameters, using the reflections from
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Fig. 5. Comparison of VSWR at the input microstrip port of a stub-tuned
microstrip—slotline transition. Microstrip stub length = 0.688 cm, slotline
stub length = 0.688 cm, both measured from the center of the transition.
€ = 20, D = 0.3175 cm, microstrip: Wy, = 0.157 cm, Z¢p, ~ 504,
€effm = 13.78, at 3.0 GHz,; slotline: W = 0.206 cm, Z;s =~ 85 Q,
€erfs =~ 8.3, at 3.0 GHz.

the microstrip and slotline stubs which are included in order
to obtain 'the two-port transition data of Fig. 5. The stub
lengths are compensated for by the additional end effects
using [19], [20]. Theoretical results of [8] [curve (d)], and
measurement of [7] [curve (e)], are also presented in Fig. 5
for reference. Comparing curves (b) and (c), it is clear that the
additional finite length current modes do not have significant
effect on coupling. The equivalent circuit model of curve
(a) provides reasonable results, but exhibits poorer bandwidth
characteristics. Our rigorous results are comparable with the
analysis of [8], but tend to deviate from the measurement of
[7]- As indicated in [8], the measurement of [7] could have
been inaccurate due to slotline termination mismatch, substrate
loss, and other experimental errors.

An inclined transition, instead of the perpendicular case,
will potentially provide additional design fiexibility. However,
similar approximations of the general reciprocity analysis dis-
cussed above for a perpendicular case, neglecting nontraveling
wave, finite length current excitations in the vicinity of the
coupling region, may not be adequate for the general inclined
case. A simple circuit model, similar to that shown in Fig. 4(a),
will not also be possible here, requiring the use of our most
rigorous form of the reciprocity/moment method formulation
for the general inclined case.

B. Crossover Transition Between Two Microstrip Lines

Fig. 6 shows the geometry of a crossover transition between
a microstrip line and a covered microstrip line inclined at angle
6. We have used the general multiport reciprocity analysis
of Section II to rigorously analyze the four-port transition of
Fig. 6. In addition to the infinite and semiinfinite traveling-
wave currents, five finite length PWS (piecewise sinusoid)
modes were used to account for the extra nontraveling-wave
current excitation in the vicinity of the transition. Note that,
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Fig. 6. Geometry of a four-port proximity (crossover) transition between
a microstrip line and a covered microstrip line, inclined at an angle 6.
The simplified equivalent circuit for the case of a perpendicular transition
(6 = 90°) using three coupling capacitors is shown as the insert.

unlike a perpendicular microstrip—slotline transition, the longi-
tudinal components of the semiinfinite traveling-wave currents
J. on the microstrip lines of a crossover junction are not
continuous across the reference plane, x, = 0. This current
discontinuity, on the microstrip line 1, for example, can be
verified from (6), (8), where we have Ry # Rs, and f, -2, =
~f3 1. In order to ensure the required current continuity,
additional half-PWS current modes have also been used in the
rigorous analysis.

The complete 4-port scattering parameters obtained from
the analysis are now used with stub terminations at ports 3
and 4 to model a two-port stub-tuned geometry. Fig. 7 shows
the results for a two-port stub-tuned perpendicular transition,
compared to the experimental results of [9]. The broadband
nature of the tramsition is evident. Tight coupling between
the two microstrip lines has been possible by using a higher
dielectric constant substrate for the top layer resulting in more
fringing fields from the bottom line coupling with the top line.
Although the agreement of our results with the experiment
of [9] in Fig. 7 has been good in terms of the general trend,
coupling level and bandwidth, we cannot particularly explain
the deviation of the results at the lower frequency end.

The modeling of unwanted parasitic capacitance between
two crossover microstrip lines is of interest in high-speed
digital integrated circuits. When the two microstrip lines are
perpendicular to each other (# = 90°), the parasitic coupling
for a perpendicular crossover can be quasi-statically modeled
by three capacitors, as shown in Fig. 6. Such a simple model
is, however, not valid for a general inclined transition. Also,
although the coupling capacitance model will provide accurate
results for digital integrated circuits, it will not be adequate
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Fig. 7. VSWR at port 1 (see Fig. 6) of a stub-tuned microstrip-to-covered
microstrip transition computed by the present method, as compared to the
experiment of [9]: W1 = 0.107 cm, Zen =~ 52Q, €551 = 3.40 (at
10 GHz.); Wp2 = 0.183 cm, Zep ~ 54Q €effa =~ 3.91 (at 10 GHz.);

€1 = 2.2, D7 = 0.0635 cm, €2 = 10.2, D; = 0.0635 cm; stub at
port 3 = 0.81 cm, at port 4 = 0.75 cm.

for microwave frequencies. Using our reciprocity analysis with
practical approximations, the equivalent coupling capacitances
of Fig. 6 can be expressed in terms of simple closed-form
expressions and single integrals. This provides an algorithm
considerably faster than the existing methods [5], [6]. Also,
the analysis of [6] is only applicable to a uniform dielectric
medium, which certainly is not the case in practical integrated
circuits. In contrast, our method is applicable to a general
multilayered medium.

From the equivalent circuit of Fig. 6 for a perpendicular
transition, it can be shown, in the limit of low frequency
(w—0),

R
IZ

= (C + C1) 21
=5 (Cm + C2)Ze» ;

N
N
1

So1 =841 = 5 Crov/Zo1 Zcn
1
S5 Z,.
ow,1,2 >> Le1,2 (51)

Let us use only the dominant longitudinal currents on the
microstrip lines

()
2 ™ Zcz (Wz/2)2—y12 (3]

— 1
F;= Jo(kyi W, £4;
(=) ot 212

In addition, neglect the finite length currents J; in (4),
(9). Under these assumptions, with excitation at port 1, the
reciprocity equation (15) for a perpendicular transition can be
written as

i=1,2. (52

1
Si1=83-1= -5 [541‘/;;2 + 521‘/;612] = 801V,

2 [Vem +2511Vf ];
S41 = Sa1, Vslz Vi

521 =

=V - (53)

s21
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The different coupling parameters V' can be computed from
(29)-(31) using the appropriate Green’s function components
[12]-[14], and the current transforms of (52). Further, using
the singularity extraction derivations of (42)—(44), we can
show

1 . AV
Vi = 5 e12+AV2=—-JTl+AV2
1 . . AV .
Vi =5 Ven + AV = —j 52 +AT,,  (54)

where AV and AVj are the contributions from the respective
extracted integrands, and V.13 = V.1 = —jAV] is the
coupling between the forward infinite traveling modes on
the two lines that can be shown to be negatively imaginary.
Unlike the perpendicular microstrip—slotline transition, here
the singular contribution, —jAVj, is less significant than the
extracted functions, AV, and AVQ. In the limit of w — 0,
we have AV) = 0. This is due to the odd symmetry of
the transverse electric field of one line that does not couple
to a constant current on the other perpendicular line (as
w — 0, e=9%<® — 3 constant). On the other hand, AV; and
AV tend to a nonzero positive value as w — 0. Now using
(54) in (53), we get

. AV
S11 = —Sn (—J *2—1 + AVz)

. AV . AV ,
Sop ==L — 8 <—J 1y AV2) . (55)

2 2

S11 and So; can now be solved from the above two equa-
tions. Using the quasi-static approximations discussed, where

10°%x15
eeee Theory of [¢]
r Present Theory
10 N /Cm( i)
< o
< B
(8] 5 L JCm(ii)
p. ° (o) .-Cz g
|-C1)'[ 1 | i !
00 1.0 2.0 3.0
GHz
@
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AVy << AV, AT
__—JAVIAV,
Su =g —re
2(1 - AV,AV,)
A%
Sor = —]—1— . (56)
2(1- AvzAT;)
Comparing (56) to (51) we can write
AV Jw 1
Cm = P 1 (57)
(1-A%An)v2d&2
A 1
Cy = MW“,( Ve _ ). (58)
(1 - AVzAVz) Zey Ze1Zea

Similarly, solving for the problem of excitation at port 2, by
proper symmetry

Cp= AN/ (A%_ 1 ) (59)
(1 — A{/&A%) ZCZ vV chZc2

The values of the coupling capacitances computed by the
above simple formulas are compared in Fig. 8(a) to the results
of [6] for a uniform dielectric case, showing good agreement.
Such accuracy has also been obtained for practical crossover
transitions with nonuniform or multiple substrates, as we
verified by comparing to our rigorous results.

As mentioned before, the coupling capacitance model of
Fig. 6 is not applicable for inclined transitions. The scattering

1.0
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Fig. 8. (a) Comparison between the normalized coupling capacitance C,, for a perpendicular crossover transition, computed using the present reciprocity
method, and the method of [6], for two sets of substrate thicknesses: (i) D1 = 1.0 cm, Ze1 ~ 318§, D2 = 0.5 cm, Zoo ~ 342 Q; (ii) Dy = 0.1 cm,
Ze1 = 178Q, D2 = 0.05 cm, Zo2 ~ 203 Q; with e,; = 1.0, W1 = 0.04 cm, €0 = 1.0, W2 = 0.04 cm. The other equivalent capacitances, C1 and Ca,
are also shown for the case (ii). {(b) The four-port scattering parameters of the above case (ii) with varying transition angle.
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(a) its equivalent circuit with different turns ratios for the two microstrip lines,

(b) scattering parameters of a four-port stub-tuned geometry obtained by terminating the ports 2 and 4 with shorted slotline stubs. Results using our six-port

analysis are compared to the results of [22]. Note that Ss1 and Sss are not,

in general, the same, but are the same here due to the identical top and bottom

MICTostrips. €,1 = €q2 = 2.22, D1 = Do = 0.0762 cm, W1 = W2 = 0.254 em, W, = 0.11 cm, Lss = 0.75 cm, slotline end correction = 0.3 cm.

" matrix of an inclined crossover can, however, be obtained
using our rigorous reciprocity analysis, that can be used to
completely characterize the junction. Fig. 8(b) shows the scat-
tering parameters for the transition of Fig. 8(a) as a function
of the transition angle. The coupling to the ports 2 and 4
are weak, but exhibit a strong angular dependence. Also, the
coupling to the port 2 can be significantly different from that to
port 4, which clearly proves that the three-capacitance model
of Fig. 6 is not valid here (the model of Fig. 6 would always
result in the same coupling to port 2 and port 4).

C. Six-Port Double Microstrip-to-Slotline Transition

Fig. 9 shows the geometry of a six-port transition with a
slotline coupled to two microstrip lines on both sides of its
ground plane. A 3-port transition, coupling the input microstrip
port 5 across its ground plane to the ports 1 and 3, can be
designed by suitable tuning the ports 2, 4, and 6 by shorted
or open stubs. In addition, one of the potts 1 or 3 can also be
tuned by an open stub to realize a two-port transition across
the ground plane from port 5 to port 3 or 1, respectively. The
complete scattering parameters for the six-port geometry of
Fig. 9 can be obtained from our general analysis, and used

along with the necessary port terminations to characterize
specific stub-tuned arrangements. Appropriate compensation
for the stub end effects may be required for accurate results,
however.

By terminating ports 2 and 4 with shorted slotline stubs of
length L,,, we have the four-port geometry of [22]. Results
of our analysis are compared in Fig. 9(b) to the aperture
analysis of [22], showing good agreement. It should be noted,
in contrast to our method that the aperture-coupling analysis of
[22] treats the slotline terminations at ports 2 and 4 as a finite
“aperture.” not as “two slotline stubs.” The present multiport
analysis is considerably simpler than that of [22]. The six-
port scattering matrix, once evaluated using our analysis,
can be used later to treat any slot lengths, or other stub
arrangements. On the contrary, repeated analysis of [22] needs
to be performed every time the slot length is changed for a
design. :

A simple equivalent circuit model, providing comparable
results to the rigorous analysis will also be useful. Extending
the equivalent circuit of Fig. 4(a), by including the additional
coupling to a second microstrip line, in Fig. 9 we have shown
a six-port equivalent circuit for the slotline-to-dual microstrip
transition. Z, and ¢ of the equivalent circuit are, respectively,
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Fig. 10. Required combinations of slot-stub admittance B at ports 2 and
4, and the open microstrip stub length L, at port 6, for different values
of characteristic impedances Z.; of the top microstrip, in order to obtain a
perfect input match at port 5.

the characteristic impedance and effective dielectric constant
of a slotline with two substrates on the two sides of the
ground plane, and can be determined using a full-wave general
analysis of [16], [12], [17]. Also, the two microstrip lines
above and below the slotline are in general different, and
couple differently to the slotline in between. This has been
accounted for by using two different turns ratios, n, and no,
in the equivalent circuit of Fig. 9. Equation (49) can also
be used here to compute n; as well as na by substituting
for the substrate and microstrip parameter of the respective
sides.

The simple equivalent circuit model of Fig. 9 with closed-
form expressions for the turns ratios can be particularly
useful for initial design'optimization and understanding when
the rigorous analysis may be extremely time consuming or
sometimes impractical to use. Consider a three-port geometry
[22], where the port 5 of Fig. 9 is coupled to ports 1 and
3, with other three ports stub-tuned. Using the equivalent
circuit of Fig. 9, it can be shown [23] that for a given input
port impedance, Z 2, different values of Z.; would require
unique combinations of the total slot-stub admittance, 2B,
(B, for each stub at ports 2 and 4) at ports 2 and 4, and
the open microstrip stub length, L,,, at port 6, in order to
obtain a perfect input match. These data are presented in
Fig. 10 for Z.» ~ 50%. It is interesting to note that it is
not possible to get a perfect input match by tuning ports 2,
4, and 6, if Z.; is less than about 25. At this limiting
value of Z., the required B¢ = 0 (a quarter-wavelength
stub) and L, ~ 1.81 cm. Also, a given value of B, can be
obtained using different combinations of slot width W, (which
determines Z, and ¢,), and slot-stub length L, related as:
B,Z, = —cot (ko\/€; Lss ). Unwanted radiation loss from the
short-circuited slotline section (strong radiation if the total slot
length is close to a half-guide wavelength), and the bandwidth
of the transition, are critical considerations in choosing the slot
and microstrip stub dimensions.
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D. Stripline-to-Dual Slotline Transition

A stripline-to-dual slotline transition is similar to a
microstrip-to-slotline transition, where the microstrip line is
replaced by a stripline and the regular. slotline is replaced by
a pair of identical slotlines (a dual slotline) printed on top and
bottom groundplanes of the stripline. The two slotlines cut
across the ground currents of the stripline flowing along the
same directions. This excites identical electric fields across the
two slots of the dual slotline. Such a dual slotline with an even-
mode field excitation, unlike an odd-mode excitation case,
does not experience any unwanted leakage to the parallel plate
mode [17], [24], and has been successfully used in feeding
dual tapered-slot antennas [25]. Fig. 11(a) shows the geometry
of two stripline-to-dual slotline junctions, with their 4th ports
cascaded, and 2nd and 3rd ports tuned using approximately
quarter-wavelength open and shorted stubs, respectively. This
cascaded geometry is suitable for characterization of the
stripline-to-dual slotline transition, avoiding the need for a
direct port connection with the dual slotline. The return loss
measurement of [25] at the stripline input port 1, as compared
to our rigorous analysis, is presented in Fig. 11(b). As before,
the complete scattering matrix for a four-port transition is
directly obtained from our general analysis, which is then
used in duplicate accounting for throughline length Lrz and
the various stub lengths, Lgy, and Lgr. The impedance and
propagation characteristics of the stripline and the dual slotline,
necessary for the transition analysis and stub calculations,
are obtained using the full-wave analysis of [12}, [15]-[17].
The comparison of return-loss results in Fig. 11(b) is good,
and demonstrates the accuracy and validity of our analysis.
The possible excitation of the parallel plate mode at various
discontinuities, and the related resonance effects [17], are the
potential problems in practical designs. Shorting of the bottom
and top ground planes may be desirable to avoid the excitations
of any such unwanted parallel plate modes.

A simplified equivalent circuit similar to that of Fig. 4(a)
is also applicable for a stripline-to-dual slotline transition, by
appropriately substituting in Fig. 4(a) for the transmission line
parameters and the turns ratio. The resulting equivalent circuit
for the cascaded geometry of Fig. 11(a) is also shown. The
turns ratio n for the geometry of Fig. 11(a) can be calculated
from (49), where we need to use the appropriate Green’s
function for the present geometry [12], [13], and substitute
for the microstrip and slotline parameters by those of the
stripline and dual slotline, respectively. Referring to Fig. 11(a)
for various parameters, we have

e Jo(kov/Eersr Wsr/2) Jo(kor/&r WsL/2)
o 2 cosh (ko,/eeff d/2)

where ko is the free space wave number. As frequency goes
to zero (kg — 0), we have n — 1, as expected for the dc case.
Results obtained using the equivalent circuit of Fig. 11(a),
with the turns ratio expression of (60), are also compared in
Fig. 11(b). As the comparison indicates, the equivalent circuit
model for a stripline—dual slotline transition with simple
closed-form expressions for its parameters can be effectively
used to get fairly accurate results.

, o (60)
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2.2cm, Ly = 10.0 cm.
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