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Abstract—A new method of analysis of surface-to surface tran-

sitions between arbitrary combinations of multilayered printed

transmission lines using a general multiport reciprocity formu-

lation is presented. The scattering parameter at a given port

of the transition is computed by directly relating it to simple
reactions of the known eigenfields of the particular port on
various induced strip currents or slot electric fields of other
transmission lines. With simplifying practical assumptions in this

general analysis, and by use of an efficient “singularity extraction
technique,” equivalent circuit models for particular cases are
extracted with simpIe closed-form expressions for the equiva-
lent circuit parameters. The multiport scattering matrix of the

transition completely describes the coupling characteristics of the
transition, and via standard network analysis can be conveniently
used for design optimization of any port terminations and/or

matching circuits. Detailed case studies of the general analysis

include: 1) a single-layered microstrip line-to-slotline transition,

2) a microstrip-to-crossed covered microstrip transition, 3) a

double microstrip line-to-slotline transition, and 4) a stripline-
to-dual sIotline transition.

I. INTRODUCTION

sURFACE-TO-SURFACE transitions between printed

transmission lines are useful for multilevel integrated

circuits, and are particularly attractive for multilevel feed

network architectures of multilayer phased arrays [1] – [4].

Characterization of crossover transitions between conducting

strips is also of significant interest in modeling parasitic

couplings between metal lines in high-speed digital inte-

grated circuits [5], [6]. An equivalent circuit model for a
microstrip–slotline transition [7] has long been used, and

a dynamic analysis for the stub-tuned microstrip–slotline

transition has also been published [8]. A quasi-static model for

a perpendicular strip-crossover has been developed in [5], with

rigorous solutions reported in [6] for only a uniform dielectric

case, and in [9] for a two-layer stub-tuned geometry. For a
multilayer phased array application [1] – [4], many other types

of transitions between two or more different combinations

of multilayer transmission lines will be useful. A general,

rigorous, and computationally efficient analysis of such large

class of transitions involving arbitrary orientations of multiple

transmission lines is warranted for successful design and

understanding.
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In this paper, we present a general, full-wave analysis of

multiport, multiple transmission line transitions using a multi-

port reciprocity formulation [10], [11]. Using this formulation,

the scattered signal at a given port of the transition is directly

related via reciprocity to the reactions of the known eigenfields

of the particular port on various induced strip-currents and

slot electric fields. This results in a simple and efficient

modeling of the coupling mechanism, as will be discussed.

With practical approximations in the reciprocity analysis, and

using a “singularity extraction technique” to compute the

various coupling factors, equivalent circuits of the transition

can be directly extracted with simple, sometimes closed-form,

expressions for the equivalent circuit parameters. In contrast,

a “brute-force” moment method analysis similar to [8], [9] is

considered strictly numerical in nature, and so computationally

inefficient, where similar extraction of an equivalent circuit

with simple expressions for the equivalent circuit parameters

will not be possible.

The analysis has been implemented in spectral domain,

in terms of spectral integrals of various field and current

transforms. A general configuration of substrate layers is

accounted for by using the multilayer spectral-domain Green’s

functions [12]– [14], whereas any arbitrary choice of trans-

mission lines of the transition is handled by substituting in the

analysis for the necessary propagation constants, characteristic

impedances, and eigenfields or eigencurrents of the individual

transmission lines [12], [15] – [17]. The arbitrary combinations

of transmission lines, as well as any arbitrary relative ori-

entations between them, are properly accounted for in our

analysis by using a general form of reciprocity relationship.

The general analysis provides the complete scattering matrix of

the multiport transition, using which port terminations (stubs,

matching circuits, etc.) can be included. Selected case studies

of the general analysis are presented. Useful circuit models

are derived from the general theory, with simple expressions

for their circuit parameters.

II. GENERAL THEORY

Fig. 1 shows the general geometry of a proximity transition

of multiple printed transmission lines. The eigensolutions for

the individual port transmission lines are described by their

characteristic impedances, ZC,, propagation constants, kc,,

the strip current or slot electric field distributions, and the
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Fig. 1. General geometry of a transition with multiple planar transmission
lines. The transmission lines (which can be a microstrip line, a slotline, a
stripli~e, or a coplanar waveguide, for example) should be imagined to be

printed on different layers of a multilayer substrate configuration. Different
current components on the input, jth, and a coupled, ~th, transmission line

—
are shown.

eigenfields

These eigensolutions are assumed to be known a @iori. “Full-

wave printed transmission line analyses [12], [15] – [17] can be

used in this effect. Further, the eigenfield distributions, E? and
–*
hi , are assumed normalized to unit prop~&~g power. fiso,

the transverse (to ;i) components, ~~ or hit, of the respective

incoming (+) or outgoing (–) eigenfields of (1) are related to

each other as

–+ ——
eit = E;, ~: = –hit . (2)

As Fig. 1 shows, a transition with iV through transmission

lines results in a 2iV port circuit. For notational convenience,

the two ports of the ith transmission line are assumed to be i
and N + i, with k~i = k~jv+i, Z~i = ZCN+~, and

–* _ –~
ei — eN+i, Ti:=Z;+i . (3)

Further, for an arbitrary port, k, k < 2N, the transmission line

associated with the port is referred to as the &h transmission

line, and the port opposite to the kth port is r;ferred to as the

~th port (see Fig. 1).
The 2N port transition of Fig. 1 is completely described

by its [2N x 2N] scattering matrix [Sij]. The scattering pa-

rameters can be characterized by exciting one port j at a

time with unity incident power from a matched source, and

computing the outgoing fields at all matched ports. Hence,

in the following discussions, we would assume a single port

(jlh) excitation problem that can be repeated for all 1 S
j ~ 2N to obtain. the complete scattering matrix. Now, for

this condition of jt h port excitation, the strip electric currents

or slot equivalent magnetic currents on the transmission lines

~ can be expressed as superposition. of two different types

of current modes, i.e., the traveling-wave part ~t of infinite

or semiinfinite extent propagating toward or away from the

junction region, and the additional nontraveling-wave currents

of finite extent ~f in the vicinity of the transition. The

traveling-wave currents ~t on the transmission lines can be

further decomposed into (see Fig. 1) 1) the jth port excitation

current ~. of infinite extent, and 2) the outgoing scattered

currents ~Sk of semiinfinite extent on kth transmission line,

for all k 5 iV:

(4)

J. = 7.j = ~je–jkeix~ ; —Ca<xj <co, (5)

~~k = [U(Xk)&.+rV~~e-~kek’k

-b U(Xk+N)&7k+Ne-~ kek’k+N]

Tk = (fkz(.Yk)fik + .fky(Yk)Yk);

~k+N = *(.fkx(!/k+N)~k+N + fk.(!/k+N)&+N) > (8)

N+ N

——E Ii~fi; Nf = ~Nfk, (9)

i=l k=l

where 7; is the finite length cument on the kth transmission

line decomposed into Nfk modes, resulting in a total of Nf

finite length modes of the system with unknown amplitudes

Ii. u(x) is the standard unit Step function.’ ~k and ~k+,iv

are the transverse variations of the forward an_dfbacks~a~d
propagating semiinfinite traveling-wave currents, J1k and J~k,

respectively, with transverse Fourier transforms Fk (gk) and

~k+N (yk+N). The ~k and ~~+N are chosen such that they

correspond to the required unit propagating power for the kth

transmission line eigenfield, as mentioned earlier. For example,

for a single microstrip linej it requires the integral of f~. over

the strip width to be 1/=, whereas for a single slotline, it

requires the integral of .fkz over the slot to be @. Also), the

+ sign before the expression for ~k+jv in (~) is requ~ired to

establish a common electric field reference for the two ports,

k and k + N, at Xk = Xk+N = 0, and should be chosen to be

positive (+) for a strip type kth transmission line, and negative

(–) for a slot type kth transmission line with an equivalent
magnetic current representation.
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A. Reciprocity Formulation
sEiB,R,B,

Here we will use a general multiport reciprocity formulation

in a similar basic form as that of [4], [14]. We will keep the fi’’)o~<’

basic formulational details to a minimum, emphasizing only

the key steps that are exclusively new and vital to the transition

c

s
modeling.

Now, the currents on all other transmission lines except
v

the ~th transmission line can be treated as the sources of—
excitation ~S (or ~s) for the outgoing scattered waves on

th &h transmission line of amplitudes R, and Ri (see Fig. 2). /.~

T&(i&J=o (’
E(A,@A,Rl, =1, hi

t
kc,, Zci

\

1

~@s)=&(iQ

Th&e source currents, 7,s (or ~S)include ali finite length

currents, ~~, k # i; all scattered traveling-wave currents,
El~, H~B,

~sh, k # ~; and the ~th port excitation current, ~~j, if ~ # ~, #

1,Ei,iii

as given b; (4)–(9). One can now use a reciprocity y trea~ment

[10], [11], [4] to relate the scattered fields, ‘Ri and RI, to
‘/ @p@@@I

2.,
the reaction of the incoming eigenfields of ports i and i,

f’-

respectively, on the excitation source ~s. Consider the two Fig. 2. Two setsof fields (subscriptedA andB) on theith tmrrsrnk.simrline,

sets of fields, identified with subscripts A and B, respectively,
with the correspondingsources, used for the reciprocity y ‘analysis. The closed

surface S should be chosen sufficiently away from the coupling region such
that are defined for the ~th transmission line at the ith and the that the ~.fields arezero at all other ports except the ith and ~th ports.—

~th ports as (see Fig. 2):

\
at ith port; Further simplifying the reciprocity equations (13), (14) using

>
the appropriate source expressions, ~S [or Es), discussed

) earlier in this section

1

R,= + ~ (Rk+N (*vik) + Rk(%’ik))

kzl

k #i

> at ith port, (lo)

1
Nf

1
+ ~ ~ ~l(+vfzl) + ~ (+ve~j), =j#.i9

. .

with corresponding sources of excitation (surface currents)
1=1

1not on ~

~.S’,4 (or, ~S’A) = ~s (or, ZTS), and (15)

~,SB (Or, ~,S’B) = O. (11)

v.%,=
Appropriately applying a reciprocity relation between the A /( ()

~-lk.,z,z~ or, ~~ . ~je-~kvz~ & ,
jth line

and B fields [4], [10], [11], [14], and simplifying using (10),
(11), (l), (2), we have (see Fig. 2)

(16)

J// (–~B.~S+~B.~S)dV=

. sources

‘1,,.,,, (EB x PA ‘~A X Ei?) ds = 2R,, (12)

Ri =

Similarly by choosing the B-fields in (10) to be propagating

in the opposite direction, we will have

. ~ku(x~)e-’k’kxk ds, (17)

Vfil =
1! lth mode “\ /

where V’s are the coupling integrals from the ith transmission

line to different current modes on other transmission lines.

It should be noted, if the scattering source distribution, ~

or ~f~, refer to an electric or an equivalent magnetic current

mode, the eigenfields for the computation of V’s in (16)–(19)

must be chosen to be, eigen-electric (E:), or eigen-magnetic
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(~~), respectively, and a (+) or a (–) sign, respectively,

must be selected before the corresponding V‘s in (15). This is

consistent with the general reciprocity equations (12)–(14). As

before, in order to maintain generality, all current distributions,

~ or ~fz have been assumed to refer to either an electric or

an equivalent magnetic current mode, as appropriate.

B. Moment Method Solution of Nontraveling- Wave Currents

In (15), we have directly established coupled relations

among the different scattering parameters. If the currents on

the transmission lines, including in the vicinity of the junction,

are closely described by the infinite and semiinfinite traveling

current modes alone (or 1, = O), the reciprocity equation (15)

will give a complete set of 2N equations to solve for the

2N unknown scattering parameters Ri. For some specific

types of transitions, this is in fact the case, as discussed in

Section III. In general, however, additional nontraveling-wave

currents are induced in the vicinity of the junction, and are

described by the finite mode currents, ~f ~, with unknown

amplitudes, 11, 1 = 1, Nf. To solve for these additional sets

of Nf unknown amplitudes, a Galerkin’s moment method

procedure is used to provide the required Nf additional linear

equations.

If the kth transmission line is a strip-type transmission line,

the total tangential electric field, ~~t, on its strips must be

zero

~;t = Efk + ~tk = ~fk + Eek + ~.k = O

(20)

where the subscripts ~, t, e ands refer to fields produced due to

the scattering sources ~f, ~~, ~,, and ~s of (4), respectively,

with various indices corresponding to the respective source

where the notation t, also to be used elsewhere, stands for

the transmission line on which the lth finite mode, ;?fl,

resides. Note that the reaction, Ve,l in (23), of the jth incident

eigenfields on the lth finite mode is zero if 1 = j,which

implies the eigenfields of a particular transmission line do not

couple to the currents on itself.

On the other hand, if the kth transmission line is a slot

type, the required boundary condition is the continuity of the

tangential magnetic fields across its slots

—2
Htk

)

(25)

Enforcing this boundary condition via a Galerkin’s testing

procedure will result in a set of linear equations similar to

(21), with

= o, ifj=~, (27)——

. ~fl ds , (28)

indices in (5), (6), (9). This zero tangential electric field bound-

ary condition can be enforced variationally by a Galerkin’s
where the superscripts 1 and 2 refer to field components ablove

testing procedure on all finite current modes, ~fl, ~ = k, on
and below the slot, respectively.

the kth transmission line
To comprehend, Z~l is the reaction from the ith to the lth

Zil = J ~f~k .~fl ds ,
lth mode

finite length basis modes, v~il and I& are the reactions from,

respectively, the forward (ii ) and backward (&+N ) propagat-
(21) ing Semiinfinite traveling currents on the ith transmission line

to the lth finite mode, and v.jl is the reaction from the ~th

infinite transmission line to the lth finite length mode.
(22)

‘veJ 1 = J ~e~k.~fl ds
lth mode

1
e–L@,zj- . ~fl ds;=

lth mode

= o, ifj=~,——
(23)

C. Spectral-Domain Formulation

NOW, the various reaction integrals (16)-(19), (22)-(24),

and (26)–(28) can be implemented in spectral-domain using

the multilayer full-wave Green’s functions of [12] –[14] and
Fourier transforms of current distributions
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v~k = ~ r T;(kyk).E(–LI,/%y,). Fi(kyi)
2T -m,k=%=-ke,

H(–kzk + k.k)e~kx&AXk% e~k’k Ayk% dky, , (30)

. $’i(kYt)H(-~.k+~ + ~ek+N)

#%k+NAxk+N, #%k+iv@k+N. d~yi , (31)

Fi (~yt)d~yi; m=f, (32)

Z;l = &
//

m fil (kzm, /c,m) “ km, ~,n)
—m

. ~fi (km, kvn) dkmz dkvn ; m=l, n=;,

(33)

. ~i (kyi)H(kzi + k,i) dkzi dkyi , (34)

“ G(hxi+N, ~yi+N)

“ ~i+N(~yi+N)H(&+N + b)

dk+iv dkYi+N, (35)

Vejl = Vfjl > (36)

k~i = k.~ Cot ~ji + k,j CSC oj~ ;

i%~,,j = lt.i CSC 9.ji + t%.j COt $j. , (37)

H(kz) = ~ . (38)

—
In the above equations, the (?s are the full-wave dyadic

Green’s functions in spectral domain with appropriate source
and field components and positions. (Azj,, Ayji) is the offset,

if any, of the reference point of the jth transmission line with

respect to that of the ith transmission line in the (~j, yj )

coordinate system (see Fig. 1). As a common practice, the

finite basis modes are assumed to be expressed with respect

to the coordinate system of the associated ith transmission

line. The test current transforms, ~ and ~, are assumed

to be expressed with respect to their own local coordinate

systems (the test coordinate system (kZm, kyn) in (32), for

example), but need to be changed to a common source

coordinate system [(kZi, /cyi) in (32), for example] before

performing the necessary spectral-domain coupling integrals.

If ~fz (k~~, ky~) is the transform of the ith finite length

mode on the (kxm, ky~) plane (1 = m), the new transform

~~1(k~., kyi) on the (kzi, kyt) plane can be expressed

k~n = ‘k~i sin Om~+ kyz COS ~mi;

lc~m = & cos L9m%+ lcyi sin b’m, , (40)

where as shown in Fig. 1, 0~i is the angle between the mth

and ith coordinate systems.

It should be noted that the spectral-domain coupling func-

tion, Veij, is a closed-form expression not requiring an integra-

tion. This is because both the source and the coupled modes

are infinite length transmission line modes. The coupling

functions V~k, V~k, and Vf il are associated with an infinite

length source mode but a noninfinite (finite or semiinfinite

length) coupled mode, and so require simple single spectral

integrals for evaluation. In contrast, for the other coupling

functions Zil, 7J(i1, and v~al, both the source and coupled

modes are of noninfinite type, and so they are expressed using

two-dimensional spectral integrals. Because the reciprocity

equations (15)–(19) involve only the simpler closed-form

or single-dimensional integral functions Veij, V,{k, V&k, and

Vfiz, essential information on the coupling mechanism are thus

efficiently extracted through the reciprocity modeling.

D. Singularity Extraction Technique

As discussed in [4], it is important to note that the Fourier

transforms of the scattered currents J~k, in (6), contain sin-

gularities at ~k,k along the real kzk spectral axis. In order

to evaluate various spectral coupling integrals involving J,k,

it requires suitable deformation of the integration contour

above and below the poles at +k,k and – k.k, respectively,

on the complex kZk spectral plane [4]. Besides, the various

spectral Green’s functions that relate the appropriate field

components to the source currents also have singularities on

complex plane, as usual. Evaluating various spectral integrals,

V and v in (29)–(36), involving the above singular functions

require careful interpretation as well as special numerical and

analytical considerations.

Consider the coupling integral V,{k, in (30), that needs to be

evaluated along the required deformed contour C, as discussed
above [4]. We decompose V~~k into two separate integrals, 11

and 12, as follows:

v~k. &
J“

71 dkvi = II + 12, (41)
—m,c

H(–kzk + kek)e~kXkAz’%e~ kykAyk% – 72] dkyi

(42)
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(43)

(44)

where it can be shown that the integral 11 is a well-behaved

integral that can be efficiently computed along the real axis.

On the other hand, the singularity of the integral, V~{k has been

effectively extracted onto 12. 12 is a simple singular integral

that has been analyticrdly evaluated along the proper deformed

contour, C. Fig. 3 shows the original, T1, and the extracted,

71 – ?2, integrands of V~k, for the crossover coupling between
two intersecting microstrip lines, along with the pole locii and

the path of integration on the real (kzi, kyi) plane. Fig. 3

clearly shows the original singular integral, and the well-

behaved extracted integral. Note that the surface-wave poles

due to the Green’s functions are not encountered by the path of

integration. This assumes that the individual transmission lines

are desirably nonleaky type [17], with propagation constants

greater than that of the surface modes.

Unlike the coupling integral, V,{k, discussed above, v~iz is a

double integral over the entire (kz; , ky~) space. Hence, in the

domain of integration of v~il, we will encounter not only the

pole due to the semiinfinite traveling-wave transform, but also

the pole due to the spectral Green’s function. Extraction of

multiple singularities of two-dimensional spectral coupling in-

.
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Fig. 3. Originaf (W) and extracted (-yl – w) integrands for the computa-
tion of coupling between the incident wave at port-1 and the forward scattered

mode (1~2) at port 2 e, I = 2.2, G-2 = 10.2, DI = D2 = 0.0f13s m

WI = 0.107 cm, W2 = 0.183 cm, .Z~l H 52Q, z~2 H 54Q, c~ffI R
3.4o, eeffz = 3.91, freq. = 10 G~.

tegrals using multiple extraction functions has been discussed

in [4] and [14], and is not repeated here.

III. RESULTS

We now apply the general analysis to selected transition

geometries. Any stub andlor matching circuit of a practical

transition geometry is accounted for via the multiport scatt-

ering matrix obtained from the general reciprocity anahysis.

Such a network approach is strictly valid only if the fields of

the stub terminations do not directly interact with the fields in

the vicinity of the transition. This condition is applicable to the

stub-tuned geometries we have studied here, as well as many

other practical transition configurations. In such cases, the end-

corrections of the stubs, if critical, can be separately analyzed

independent of the transition [18] – [20], and then incorporated

as the port termination of the transition via the multiport

scattering matrix. In other words, the transition coupling and

the end-discontinuity of the tuning stubs are considered as two

distinct problems electrically independent of each other. We

have limited the scope of our paper to the rigorous modeling

of the transition coupling alone. Unless otherwise mentioned,

a stub has been assumed ideal without including any end-

correction, which in most cases results in only second-order

corrections. A colinear transition similar to [21], where the

open ends of the transmission lines are essentially inseparable

from the transition coupling, cannot be handled by the present

analysis.

A. Microstrip-to-Slotline Transition

Fig. 4(a) shows the general geometry of a transition between

a microstrip line and a slotline, which are generally inclined

at an angle 6’. Using the reciprocity/moment method analysis

discussed in Section II, this transition can be rigorously ana-

lyzed to obtain the complete four-port scattering parameters.

However, several degrees of practical approximations can be

possible neglecting non-dominant coupling effects. We will

specifically discuss such approximations for a perpendicular

transition. The approximations have been validated by com-

paring to our most rigorous results and other results from

literature.

Consider the transition geometry of Fig. 4(a), with O =

90°. We apply the general reciprocity analysis of Section II

to this perpendicular transition, neglecting the finite length

nontraveling-wave currents ~f in (4), (9). Assume the fol-

lowing transverse variations in (8):

described over the strip-width of the microstrip line, or the

slot-width of the slotline, respectively. For excitation at port 1,

using proper symmetry considerations for coupling betvveen

different ports, the reciprocity equation (15) can be written
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Fig. 4. (a) Geometry of a four-port transition between a microstrip line and a slotline, which are, in general, inclined with each other at an angle
6’. The simplified equivalent circuit for the transition when O = 90° is shown as the insert. (b) Comparison of equivalent turns ratio n for a

perpendicular microstrip–slotline transition obtained from the present reciprocity model (49) with that of Knorr’s model [7]: curve I—D = 0.3175 cm,

% = 20, Wrn = 0.157 cm, 14’s = 0.206 cm, curve II—D = 0.12 cm, C. = 10.2, Wm = 0.12 cm, W. = 0.11 cm.

as

(R1 = S11 = –Rs = 1 – S31 = + R4V~z + RzV~b12
)

= S41V.{2;

(
Rz = –; Ve21 – + R3V.~1 + RIV.%

)

—— ~ ve12 – Rlv.~l;

R2 =R4=S41 =S21; VJ2 = V;12;

V.jl = –V.;l; V,12 = –V& , (46)

These complete sets of equations can be solved for all S’il.

Similarly solving for excitation at other ports, by substituting

appropriate V ‘S in (46), we obtain the other scattering parame-
ters, S’ij, j = 2,3,4. The required V’s may be computed

from (29)–(31), that involve only closed-form functions or

single spectral integrals. With further simplification based on

the singularity extraction derivations of (41)–(44), we obtain

the follQwing approximations:

Vjk % ; V.ik = –; V&,;— —

i,k=l,2; i+k. (47)

The above approximations are valid if in (41)–(44) the contri-

bution from the extracted integral 11 is neglected as compared

to the extraction function 12. Physically, this implies that

the coupling to a semiinfinite current mode is approximated

by half the coupling to the respective infinite traveling-wave

current, neglecting the additional reactive coupling to the
discontinuity of the semiinfinite mode. Using these approxi-

mations of (47) in (46), we get

SH = 1 – S31 = ; S41%2 = S33;

S21 = 5’41 = S23 = S43 = ~ Ve12 – ~ ‘ll V.23

= + V&(l – Sll);

V-12 = %4; V.23 = ‘ve21 = ve12;

1 1
15’M= SZ4 – 1 = S44 = ‘~ S12Ve23 = ‘~ S12V.12;

Sil = s],. (48)
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These above-mentioned sets of relations result in the equiva-

lent circuit shown in Fig. 4(a) (insert), where the turns ratio

n can be expressed as

Jo(ke. wm/2)Jo(kemw. /2) GH, Jz(–kem, Ice.)

Jo(ke.wm/2)Jo(kemw. /2)
.,. . -

where V.12 is evaluated using (29); the Green’s function com-

ponent, GHVJa, accounts for the y-component of the magnetic

field on the ground plane produced due to an x-directed current

source placed on top of the substrate [12]–[14]; Jo is the

zeroth-order Bessel function; and

~=’o~;
kl= [h;c.–k

7.0
1,

I
@ — —

I

I
1; ;

6.0 -

1

(b) —

5.0 -

$
g! 4.0 -

I
3.0 –

I

\
2.0 –

1.00 I I
1.0 2.0 3.0 4.0 5.0 6.0

Fretl. (GHz)

Fig.5. Comparison of VSWR at the input microstrip port of a stub-tuned
microstrip–slotline transition. Microstrip stub length = 0.688 cm, slotline

stub length = 0.688 cm, both measured from the center of the transition.

6, = 20, ~ = 0.3175 cm, microstrip: Wm = 0.157 cm, Zcm (Y 500,

‘effm m 13.78, at 3.OGHZ.; slotline: Ws = 0.206 cm, ZCS :x 350,
ceff~ E 8.3, at 3.0 GHz.

!%2= ko&s +%ffwr – 11;
k., = kom; ken = ko~= . (50)

This expression for turns ratio n uses accurate distributions

of microstrip current and slot electric field with proper edge

singularity, as well as the exact spectral Green’s function ex-

pressions. It realistically depends on the microstrip parameters

(Wm, C.ffm), as well as the slotline parameters (Ws, Ceffs).

In contrast, the ad hoc expression of Knorr [7] unrealistically

depends on the slotline parameters alone. Our values of n

are compared to those of [7] in Fig. 4(b) for two parameter

sets. The two methods provide comparable ‘results for lower

frequencies, with unity at dc ( f z O), as expected. However,

the two methods significantly deviate at higher frequencies

suggesting the inaccuracy of the Knorr’s model [7] for high-

frequency applications. Moreover, our equation (49) provides

a general closed-form expression that is also applicable to

other microstrip – slotline transitions with multilayer substrate

geometries. Such flexibility is achieved by substituting in (49)

the proper values of propagation constants, k.m and ice., for

the multilayer microstrip line and slotline [12]– [15], [17], and

the appropriate expression for the multilayer Green’s function

[12] -[14].

Fig. 5 compares various results for a perpendicular stub-

tuned transition. The curve (a) has been derived using the

equivalent circuit model of Fig. 4(a), where the turns ratio n

is given by the closed-form expression of (49). The curve (b)

uses the reciprocity equations (46), and unlike the curve (a) it

does not use the approximations of (47). Clearly, both curves

(a) and (b) neglect the finite length nontraveling-wave current

modes in the vicinity of the junction, whereas curve (c) has

been obtained using the most rigorous reciprocity formulation,

including the additional finite length current modes ~f in (4),

(9). It may be noted that our reciprocity analysis provides

the 4-port scattering parameters, using the reflections from

the microstrip and slotline stubs which are included itn order

to obtain the two-port transition data of Fig. 5. The stub

lengths are compensated for by the additional end effects

using [19], [20]. Theoretical results of [8] [curve (d)], and

measurement of [7] [curve (e)], are also presented in Fig. 5

for reference. Comparing curves (b) and (c), it is clear that the

additional finite length current modes do not have significant

effect on coupling. The equivalent circuit model of curve

(a) provides reasonable results, but exhibits poorer bandwidth

characteristics. Our rigorous results are comparable with the

analysis of [8], but tend to deviate from the measurement of

[7]. As indicated in [8], the measurement of [7] could have

been inaccurate due to slotline termination mismatch, substrate

loss, and other experimental errors.

An inclined transition, instead of the perpendicular case,

will potentially provide additional design flexibility. However,

similar approximations of the general reciprocity analysis dis-

cussed above for a perpendicular case, neglecting nontraveling

wave, finite length current excitations in the vicinity of the

coupling region, may not be adequate for the general inclined

case. A simple circuit model, similar to that shown in Fig. 4(a),

will not also be possible here, requiring the use of our most

rigorous form of the reciprocity y/moment method formulation

for the general inclined case.

B. Crossover Transition Between Two Microstrip Lines

Fig. 6 shows the geometry of a crossover transition between

a microstrip line and a covered microstrip line inclined at angle
0. We have used the general multiport reciprocity analysis

of Section II to rigorously analyze the four-port transition of

Fig. 6. In addition to the infinite and semiinfinite travelling-

wave currents, five finite length PWS (piecewise sinusoid)

modes were used to account for the extra nontraveling-wave

current excitation in the vicinity of the transition. Note that,
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Fig. 6. Geometry of a four-port proximity (crossover) transition between
a microstrip line and a covered microstrip line, inclined at an angle 6’.

The simplified equivalent circuit for the case of a perpendicular transition

(0= 90° ) using three coupling capacitors is shown as the insert.

unlike a perpendicular microstrip– slotline transition, the longi-

tudinal components of the semiinfinite traveling-wave currents

~, on the microstrip lines of a crossover junction are not

continuous across the reference plane, z, = O. This current

discontinuity, on the microstrip line 1, for example, can be

verified from (6), (8), where we have RI # R3, and ~1 .21 =

–73 .21. In order to ensure the required current continuity,

additional half-PWS current modes have also been used in the

rigorous analysis.

The complete 4-port scattering parameters obtained from

the analysis are now used with stub terminations at ports 3

and 4 to model a two-port stub-tuned geometry. Fig. 7 shows

the results for a two-port stub-tuned perpendicular transition,

compared to the experimental results of [9]. The broadband

nature of the transition is evident. Tight coupling between

the two microstrip lines has been possible by using a higher

dielectric constant substrate for the top layer resulting in more

fringing fields from the bottom line coupling with the top line.

Although the agreement of our results with the experiment

of [9] in Fig. 7 has been good in terms of the general trend,

coupling level and bandwidth, we cannot particularly explain

the deviation of the resttits at the lower frequency end.

The modeling of unwanted parasitic capacitance between

two crossover microstrip lines is of interest in high-speed
digital integrated circuits. When the two microstrip lines are

perpendicular to each other (0 = 900), the parasitic coupling

for a perpendicular crossover can be quasi-statically modeled

by three capacitors, as shown in Fig. 6. Such a simple model

is, however, not valid for a general inclined transition. Also,

although the coupling capacitance model will provide accurate

results for digital integrated circuits, it will not be adequate

“6-
12.0

Freq. (GHz)

Fig. 7. VSWR at port 1 (see Fig. 6) of a stub-tuned microstrip-to-covered

microstrip transition computed by the present method, as compared to the

experiment of [9]: w~l = 0.107 cm, Z~I N 52 Q Eef~I R 3.40 (at
10 GHz.); W~2 = 0.183 cm, 2,2 & 540, e,ffz E 3.91 (at 10 GHz.);

6,1 = 2.2, D1 = 0.0635 cm, ●rz = 10.2, DI = 0.0635 cm; stub at
port 3 = 0.81 cm, at port 4 = 0.75 cm.

for microwave frequencies. Using our reciprocity analysis with

practical approximations, the equivalent coupling capacitances

of Fig. 6 can be expressed in terms of simple closed-form

expressions and single integrals. This provides an algorithm

considerably faster than the existing methods [5], [6]. Also,

the analysis of [6] is only applicable to a uniform dielectric

medium, which certainly is not the case in practical integrated

circuits. In contrast, our method is applicable to a general

multilayered medium.

From the equivalent circuit of Fig. 6 for a perpendicular

transition, it can be shown, in the limit of low frequency

(w+ o),

Sll = * (f% + G)zl

S22 = y (L’m + C72)ZC2

S’J1= S41 Z y cm~m
1

>> 2.1,2.
Wcm, ~,2

Let us use only the dominant longitudinal

microstrip lines

}

;

(51)

currents on the

()~,=--.-!.-
T& *“;

‘() — Jo(kyiW’1/2)i4;

‘i= &

i=l,2. (52)

In addition, neglect the finite length currents ~f in (4),

(9). Under these assumptions, with excitation at port 1, the
reciprocity equation (15) for a perpendicular transition can be

written as

[ 1SII=S31 – 1 = ‘+ S41V:2 + S21V9:2 = ‘S21V:2;

[ 1S21 = –; ve21 + 2S11VJ1 ;

S41 = S21, VJ2 = V:12; V.jl = V:21 . (53)



DAS: ANAIYSIS OF SURFACE-TO-SURFACE TRANSITIONS BETWEEN MULTIPLE PRINTED TRANSMISSION LINES 1173

The different coupling parameters V can be computed from AV1 << AV2, AV2

(29)-(31) using the appropriate Green’s function components

[12] -[14], and the current transforms of (52). Further, ,using SIl =
–jAvlAv2

the singularity extraction derivations of (42)–(44), we can 2(1 – AV2AV2)

show

AV1
s.21_=

jAV1

— + AV2 ( )
2 1 – AV2AV2 “v~z = ; K12 + AV2 = –j ~

(56)

Avl
Vjl = : V,21 + AV2 = –j ~ + AV2 , (54)

Comparing (56) to (51) we can write

where AV2 and AV2 are the contributions from the respective

extracted integrands, and V.lz = V.21 = –jAV1 is the

coupling between the forward infinite traveling modes on

the two lines that can be shown to be negatively imaginary.

Unlike the perpendicular microstrip–slotline transition, here

the singular contribution, –jAV1, is less significant than the

extracted functions, AV2 and AV2. In the limit of w ~ O,

we have AV1 = O. This is due to the odd symmetry of

the transverse electric field of one line that does not couple

to a constant current on the other perpendicular line (as

w ~ O, e–~~ex -i a constant). On the other hand, AV2 and

AV2 tend to a nonzero positive value as w -+ O. Now using

(54) in (53), we get

(Sll = –S21 –j
AVI
~ + AV2

)

AVI

(

AV1

)
S21=j T–S11 –jy+AV2 . (55)

S1l and S21 can now be solved from the above two equa-

tions. Using the quasi-static approximations discussed, where

cm =
AV1/w

(
I-AV2AV2) & ‘ ’57)

cl =
AV1/w AV2 1

(
)( )%-- “

(58)
1 – AV2AV2

Similarly, solving for the problem of excitation at port 2, by

proper symmetry

(3?=
AV1/w AV2 1

(
)( )zc2–a “

(59)
1 – AV2AV2

The values of the coupling capacitances computed by the

above simple formulas are compared in Fig. 8(a) to the results

of [6] for a uniform dielectric case, showing good agreement.

Such accuracy has also been obtained for practical crossover

transitions with nonuniform or multiple substrates, as we

verified by comparing to our rigorous results.

As mentioned before, the coupling capacitance model of

Fig. 6 is not applicable for inclined transitions. The scattering

10-3X15
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Fig. 8. (a) Comparison between the normalized coupling capacitance Cm for a perpendicular crossover transition, computed using the present reciprocity
method, and the method of [6], for two sets of substrate thicknesses: (i) DI = 1.0 cm, Zcl ~ 318 Q D2 = 0.5 cm, 2.2 E 342 Q; (ii) DI = 0.1 cm,
Zcl = 178 Q, D2 = 0.05 cm, 2=2 H 203 L?; with Crl = 1.0, WI = 0.04 cm, c,2 = 1.0, W2 = 0.04 cm. The other equivalent capacitances, Cl and C’z,
are also shown for the case (ii). (b) The four-port scattering parameters of the above case (ii) with varying transition angle.
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Fig. 9. Geometry of a six-port slotline-to-double microstrip transition, and (a) its equivalent circuit with different turns ratios for the two microstrip lines,

(b) scattering parameters of a four-port stub-tuned geometry obtained by terminating the ports 2 and 4 with shorted slotline stubs. Results using our six-port
analysis are compared to the results of [22]. Note that SE,I and SW are not, in general, the same, but are the same here due to the identical top and bottom
microstrips. Crl = Crz = 2.22, D1 = D2 = 0.0762 cm, W’nl = PVm2 = 0.254 cm, W, = 0.11 cm, LS, = 0.75 cm, slotline end correction = 0.3 cm.

matrix of an inclined crossover can, however, be obtained

using our rigorous reciprocity analysis, that can be used to

completely characterize the junction. Fig. 8(b) shows the scat-

tering parameters for the transition of Fig. 8(a) as a function

of the transition angle. The coupling to the ports 2 and 4

are weak, but exhibit a strong angular dependence. Also, the

coupling to the port 2 can be significantly different from that to

port 4, which clearly proves that the three-capacitance model

of Fig. 6 is not valid here (the model of Fig. 6 would always

result in the same coupling to port 2 and port 4).

C. Six-Port Double Microstrip-to-Slotline Transition

Fig. 9 shQws the geometry of a six-port transition with a

slotline coupled to two microstrip lines on both sides of its

ground plane. A 3-port transition, coupling the input microstrip

port 5 across its ground plane to the ports 1 and 3, can be

designed by suitable tuning the ports 2, 4, and 6 by shorted

or open stubs. In addition, one of the ports 1 or 3 can also be

tuned by an open stub to realize a two-port transition across

the ground plane from port 5 to port 3 or 1, respectively. The

complete scattering parameters for the six-port geometry of

Fig. 9 can be obtained’ from our general analysis, and used

along with the necessary port terminations to characterize

specific stub-tuned arrangements. Appropriate compensation

for the stub end effects may be required for accurate results,

however.

By terminating ports 2 and 4 with shorted slotline stubs of

length L~9, we have the four-port geometry of [22]. Results

of our analysis are compared in Fig. 9(b) to the aperture

analysis of [22], showing good agreement. It should be noted,

in contrast to our method that the aperture-coupling analysis of

[22] treats the slotline terminations at ports 2 and 4 as a finite

“aperture,” not as “two slotline stubs.” The present multiport
analysis is considerably simpler than that of [22]. The six-

port scattering matrix, once evaluated using our analysis,

can be used later to treat any slot lengths, or other stub
arrangements. On the contrary, repeated analysis of [22] needs

to be performed every time the slot length is changed for a

design.

A simple equivalent circuit model, providing comparable

results to the rigorous analysis will also be useful. Extending

the equivalent circuit of Fig. 4(a), by including the additional

coupling to a second microstrip line, in Fig. 9 we have shown

a six-port equivalent circuit for the slotline-to-dual microstrip

transition. Zs and e, of the equivalent circuit are, respectively,
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Fig. 10. Required combinations of slot-stub admittance 1?. at ports 2 and
4, and the open microstrip stub length L, ~ at port 6, for different values
of characteristic impedances ZC 1 of the top microstrip, in order to obtain a
perfect input match at port 5.

the characteristic impedance and effective dielectric constant

of a slotline with two substrates on the two sides of the

ground plane, and can be determined using a full-wave general

analysis of [16], [12], [17]. Also, the two microstrip lines

above and below the slotline are in general different, and

couple differently to the slotline in between. This has been

accounted for by using two different turns ratios, nl and n2,

in the equivalent circuit of Fig. 9. Equation (49) can also

be used here to compute nl as well as n2 by substituting

for the substrate and microstrip parameter of the respective

sides.

The simple equivalent circuit model of Fig. 9 with closed-

form expressions for the turns ratios can be particularly

useful for initial design’ optimization and understanding when

the rigorous analysis may be extremely time consuming or

sometimes impractical to use. Consider a three-port geometry

[22], where the port 5 of Fig. 9 is coupled to ports 1 and

3, with other three ports stub-tuned. Using the equivalent

circuit of Fig. 9, it can be shown [23] that for a given input

port impedance, ZC2, different values of ZC1 would require

unique combinations of the total slot-stub admittance, 2B~

(Bs for each stub at ports 2 and 4) at ports 2 and 4, and

the open microstrip stub length, L,m, at port 6, in order to

obtain a perfect input match. These data are presented in

Fig. 10 for 2.2 N 500. It is interesting to note that it is

not possible to get a perfect input match by tuning ports 2,

4, and 6, if Z.l is less than about 25 Q. At this limiting

value of Z.l, the required Bs = O (a quarter-wavelength

stub) and L,~ H 1.81 cm, Also, a given value of B, can be

obtained using different combinations of slot width W, (which
determines Z. and es), and slot-stub length L.. related as:

B,ZS = – cot (ko&Lss ). Unwanted radiation loss from the

short-circuited slotline section (strong radiation if the total slot

length is close to a half-guide wavelength), and the bandwidth

of the transition, are critical considerations in choosing the slot

and microstrip stub dimensions.

D. Stripline-to-Dual Slotline Transition

A stripline-to-dual slotline transition is similar to a

microstrip-to-slotline transition, where the microstrip line is

replaced by a stripline and the regular, slotline is replaced by

a pair of identical slotlines (a dual slotline) printed on top and

bottom groundplanes of the stripline. The two slotlines cut

across the ground currents of the stripline flowing along the

same directions. This excites identical electric fields across the

two slots of the dual slotline. Such a dual slotline with atneven-

mode field excitation, unlike an odd-mode excitations case,

does not experience any unwanted leakage to the parallel plate

mode [17], [24], and has been successfully used in feeding

dual tapered-slot antennas [25]. Fig. 1l(a) shows the geometry

of two stripline-to-dual slotline junctions, with their 4th ports

cascaded, and 2nd and 3rd ports tuned using approximately

quarter-wavelength open and shorted stubs, respectively. This

cascaded geometry is suitable for characterization of the

stripline-to-dual slotline transition, avoiding the need for a

direct port connection with the dual slotline. The return loss

measurement of [25] at the stripline input port 1, as compared

to our rigorous analysis, is presented in Fig. n(b). As before,

the complete scattering matrix for a four-port transition is

directly obtained from our general analysis, which is then

used in duplicate accounting for throughline length LTH and

the various stub lengths, LSL and LsT. The impedance and

propagation characteristics of the stripline and the dual slotline,

necessary for the transition analysis and stub calculations,

are obtained using the full-wave analysis of [12], [15] -[17].

The comparison of return-loss results in Fig. 1l(b) is good,

and demonstrates the accuracy and validity of our analysis.

The possible excitation of the parallel plate mode at various

discontinuities, and the related resonance effects [17], are the

potential problems in practical designs. Shorting of the bottom

and top ground planes may be desirable to avoid the excitations

of any such unwanted parallel plate modes.

A simplified equivalent circuit similar to that of Fig. 4(a)

is also applicable for a stripline-to-dual slotline transition,, by

appropriately substituting in Fig. 4(a) for the transmission line

parameters and the turns ratio. The resulting equivalent circuit

for the cascaded geometry of Fig. n(a) is also shown. The

turns ratio n for the geometry of Fig. n(a) can be calculated

from (49), where we need to use the appropriate Green’s

function for the present geometry [12], [13], and substitute

for the microstrip and slotline parameters by those of the

stripline and dual slotline, respectively. Referring to Fig. 1 l(a)

for various parameters, we have

Jo (ko~ W,9T/2) & (kO&W~~/2)
n=

2 cosh (ko@d/2) ‘
(60)

where kO is the free space wave number. As frequency goes

to zero (k. ~ O), we have n -+ 1, as expected for the dc case,
Results obtained using the equivalent circuit of Fig. n(a),

with the turns ratio expression of (60), are also compared in

Fig. 1l(b). As the comparison indicates, the equivalent circuit

model for a stripline–dual slotline transition with simple

closed-form expressions for its parameters can be effectively

used to get fairly accurate results.
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